Wednesday, July 26, 2017

Ginger Effective for Migraines

Ginger as Effective as Synthetic Drug in Migraine, but Without the Side Effects

Posted on: Monday, July 17th 2017 at 11:00 am
Written By: Dr. Michael Murray

Originally published on doctormurray.com.
The healing effects of ginger are well-documented, and now new data shows the efficacy of ginger on migraine headaches. 
Introduction:
Migraine headaches are estimated to affect over 28 million Americans. These headaches are caused by excessive dilation of blood vessels in the head and are characterized by a throbbing or pounding sharp pain.
The standard medical approach is the use of over-the-counter (OTC) and prescription (Rx) drugs. The OTC options are pain relievers alone or in combination such as the combination of acetaminophen, aspirin and caffeine. OTC choices are usually of limited benefit, especially in more severe cases.
The most popular Rx drugs are the triptans. These drugs work by constricting blood vessels as well as blocking pain pathways in the brain. Sumatriptan (Imitrex) is regarded as the gold standard of these drugs as it has the longest track record and is the most studied. It brings about almost immediate relief for many patients, but headache recurs in almost 40% of people within 24 hours after taking the drug. Minor side effects of triptans include nausea, dizziness, drowsiness and muscle weakness. But, these medications can also cause more serious side effects such as coronary artery spasms, heart attacks, stroke, abnormal heart beats, and seizures.
There are a number of dietary and supplement strategies that have been shown to be effective alternative treatments in migraine with success rates often superior to standard therapy. In particular, a new study compared ginger powder head-to-head with Sumatriptan. Ginger showed equal effectiveness, but a better safety profile.
Background Data:
Historically, the majority of complaints for which ginger was used concerned the gastrointestinal system. Ginger is generally regarded as an excellent carminative (a substance that promotes the elimination of intestinal gas) and intestinal spasmolytic (a substance that relaxes and soothes the intestinal tract). Several double-blind studies have shown ginger to yield positive results in a variety of gastrointestinal issues, especially those related to nausea and vomiting.
Ginger was also used historically in pain and inflammation. Some, but not all clinical studies have supported this use with positive results in various forms of arthritis, chronic low back pain, painful menstruation, and muscle pain. The active compounds of ginger are the volatile, aromatic compounds like gingerol.

Ginger has also been shown to exert a number of very interesting anti-inflammatory effects in experimental studies. Early studies in the treatment of migraine headaches were promising, but most were conducted with a combination product containing ginger extract and feverfew.
New Data:
In a study conducted in Iran, a team of neurologists compared ginger and sumatriptan in 100 men and women who had suffered migraines for an average of seven years. The patients were randomly assigned to either the ginger group or the sumatriptan group. They were given a box of 5 caplets containing their test medication (250 mg caplet of dried ginger powder or an identically looking caplet containing 50 mg of sumatriptan in a double-blind fashion. Neither the participants nor the observers knew which caplets the patient was taking until the study was completed. Patients were instructed to take a caplet as soon as a migraine started.
For each headache that occurred during that month, participants recorded the time the headache began, headache severity before taking the medication and degree of pain relief at 30, 60, 90 and 120 minutes as well as 24 hours after taking it.
Results showed that ginger was equally as effective as sumatriptan achieving 90% relief within two hours after ingestion. While ginger had a very small percentage (4%) experiencing minor digestive symptoms, 20% of patients taking sumatriptan reported dizziness, drowsiness, or heartburn.
Commentary:
The dosage of ginger used in this study was very low (250 mg dried ginger root). Higher dosages more than likely would have produced even better results. Most clinical studies have used a dosage of 1g powdered ginger daily. My feeling is that fresh ginger at an equivalent dosage would yield even better results because it contains active enzymes and higher levels of other more active constituents as well. This equivalent dosage would be about 10g or one-third ounce fresh ginger, roughly a quarter-inch slice. The best method to take advantage of fresh ginger is to juice it. Ginger is a great addition to virtually every fresh fruit and vegetable juice. You can also juice or grate fresh ginger and add it to sparkling mineral water for some real ginger ale.
Fresh ginger can now be purchased in the produce section at most supermarkets. It is a phenomenal, easy available super natural medicine. When buying fresh ginger, the bronze root should be fresh looking, with no signs of decay like soft spots, mildew, or a dry, wrinkled skin. Store fresh ginger in the refrigerator.
Reference:
Maghbooli M, Golipour F, Moghimi Esfandabadi A, Yousefi M. Comparison between the efficacy of ginger and sumatriptan in the ablative treatment of the common migraine. Phytother Res. 2014 Mar;28(3):412-5.

Dr. Murray is one of the world’s leading authorities on natural medicine. He has published over 40 books featuring natural approaches to health. His research into the health benefits of proper nutrition is the foundation for a best-selling line of dietary supplements from Natural Factors, where he is Director of Product Development. He is a graduate, former faculty member, and serves on the Board of Regents of Bastyr University in Seattle, Washington. Please Click Here to receive a Free 5 Interview Collection from Dr Murray's Natural Medicine Summit with the Top Leaders in the Field of Natural
Medicine. Sign up for his newsletter and receive a free copy of his book on Stress, Anxiety and Insomnia.
Disclaimer: This article is not intended to provide medical advice, diagnosis or treatment. Views expressed here do not necessarily reflect those of GreenMedInfo or its staff.
Internal Site Commenting is limited to members

Disqus commenting is available to everyone.

Sunday, July 23, 2017

Are Micro RNA's from Plants the Future of Healing with Food?

Are MicroRNAs from Plants the Future of Healing with Food?

Posted on: Monday, July 17th 2017 at 9:45 am
Written By: Dr. Michael Murray

Originally published on doctormurray.com.
New research is exploding into scientific journals detailing exciting ways in which foods interact with the expression of our genes. In fact, there is a whole new field of study known as “nutrigenomics” researching the effects of foods and food constituents on gene expression.
Recently, there have been major development in nutrigenomics that opens the possibility that successfully preventing and treating many diseases may be as simple as administering vegetables and medicinal herbs to deliver specific factors known as microRNAs.
Background Data:
The first step in transferring the genetic code of DNA occurs via a process called transcription. During transcription, the double-helix strand of DNA is split and then transcribed into a parallel single stranded RNA molecule. One form of RNA is called messenger RNA because it is “translated” by various cell components to assemble a specific protein or perform another specific vital task in cell function. Another type of RNA is composed of small fragments called microRNAs. It is now well-accepted that microRNA play a huge role in turning up and down the levels of key regulatory proteins within cells.
MicroRNAs are used by cells to modify many processes, including how cells grow and die, as well as restore balance in cell function. Many researchers feel that delivering the right microRNAs offer tremendous potential in the treatment of virtually every human disease.
Until recently scientists thought microRNAs were only made by our own cells, but new research shows that microRNAs from plants are absorbed from the diet and affect cell function just like the microRNAs transcribed from our own DNA. In other words, the microRNAs that we ingest from plants can influence the expression of our genetic code and cell function. Since microRNAs affect the expression of up to 30% of our genes, these results are extremely thought-provoking and provide another avenue that plant foods may be influencing our health and reducing our risk for certain diseases.
New Data:
To investigate the therapeutic potential of plant microRNAs in treating infectious diseases, researchers in China used an old herbal remedy for colds and influenza, Chinese honeysuckle (Lonicera japonica). Previous work had shown that this plant contains a high amount of a microRNA identified as miR2911. The study showed that miR2911 is taken up by the GI tract upon ingestion of honeysuckle tea, and travels via the bloodstream to the lungs, where it directly targets influenza A virus replication. In other words, the honeysuckle microRNA is delivered to the area of infection and effectively prevents the virus from reproducing. The authors suggested that that honeysuckle has medicinal properties not only because it possesses miR2911, but also because ingestion of the plant enhances dietary uptake of other microRNAs.

Commentary:
The discovery of plant microRNAs influencing human cell expression as well as in the case of the study reviewed here, viral genetic expression will ultimately revolutionize medicine. The possibilities are endless and the research is accumulating rapidly on a global basis.
Results from the Human Genome Project (HGP) taught researchers that our genetic code is important, but even more important are factors that influence how the genetic code is expressed. Chief among these other factors is diet and food components. An analogy would be that DNA is like a computer (hardware) while our diet, lifestyle, and attitude is like complex software. The hardware is important, for sure, but it is the software that actually tells the DNA what to do. The bottom line is that food definitely effects how our genetic code is expressed giving us the power to change our genetic predispositions to various health issues including cancer, heart disease, diabetes, and Alzheimer’s disease.
Additional Reading related to mRNAs
Reference:
Zhou Z, Li X, Liu J, et al. Honeysuckle-encoded atypical microRNA2911 directly targets influenza A viruses. Cell Res. 2015 Jan;25(1):39-49.

Dr. Murray is one of the world’s leading authorities on natural medicine. He has published over 40 books featuring natural approaches to health. His research into the health benefits of proper nutrition is the foundation for a best-selling line of dietary supplements from Natural Factors, where he is Director of Product Development. He is a graduate, former faculty member, and serves on the Board of Regents of Bastyr University in Seattle, Washington. Please Click Here to receive a Free 5 Interview Collection from Dr Murray's Natural Medicine Summit with the Top Leaders in the Field of Natural
Medicine. Sign up for his newsletter and receive a free copy of his book on Stress, Anxiety and Insomnia.
Disclaimer: This article is not intended to provide medical advice, diagnosis or treatment. Views expressed here do not necessarily reflect those of GreenMedInfo or its staff.
Internal Site Commenting is limited to members

Disqus commenting is available to everyone.

Friday, July 21, 2017

Thursday, July 20, 2017

Learn the Secrets of the Nakshatras, Punarvasu: Return of the Light

Black Seed May Treat Hypothyroidism (Hashimoto's Disease ) Clinical Trial Reveals



Black Seed May Treat Hypothyroidism (Hashimoto's Disease), Clinical Trial Reveals
Posted on: Sunday, March 12th 2017 at 5:45 am
Written By: Sayer Ji, Founder
This article is copyrighted by GreenMedInfo LLC, 2017

A recent clinical trial indicates that the most common cause of hypothyrodism (Hashimoto's disease) may be improved with the addition of only two grams of powdered black seed daily. 
A powerful new randomized clinical trial reveals that the ancient healing food known as nigella sativa (aka “black seed”), once known as the “remedy for everything but death,” may provide an ideal treatment for the autoimmune thyroid condition known as Hashimoto’s disease, which is the most common cause of hypothyroidism.
The study took 40 patients with Hashimoto's thyroiditis, aged between 22 and 50 years old, and randomized them into one group receiving two grams of powdered encapsulated Nigella sativa and the other 2 grams starch placebo daily for 8 weeks.. Changes in anthropometric variables, dietary intakes, thyroid status, serum VEGF and Nesfatin-1 concentrations were measured.
The positive results were reported as follows:
"Treatment with Nigella sativa significantly reduced body weight and body mass index (BMI). Serum concentrations of thyroid stimulating hormone (TSH) and anti-thyroid peroxidase (anti-TPO) antibodies decreased while serum T3 concentrations increased in Nigella sativa-treated group after 8 weeks. There was a significant reduction in serum VEGF concentrations in intervention group. None of these changes had been observed in placebo treated group. In stepwise multiple regression model, changes in waist to hip ratio (WHR) and thyroid hormones were significant predictors of changes in serum VEGF and Nesgfatin-1 values in Nigella sativa treated group (P < 0.05)."
The researchers concluded:
"Our data showed a potent beneficial effect of powdered Nigella sativa in improving thyroid status and anthropometric variables in patients with Hashimoto's thyroiditis. Moreover, Nigella sativa significantly reduced serum VEGF concentrations in these patients. Considering observed health- promoting effect of this medicinal plant in ameliorating the disease severity, it can be regarded as a useful therapeutic approach in management of Hashimoto's thyroiditis."
What is Hashimoto’s Disease and Why Does Synthetic T4 Fail To Improve Well-Being
Hashimoto’s disease can be a devastating condition, especially when treated with a conventional medical approach. Also known as chronic lymphocytic thyroiditis, it is a progressive autoimmune disease where, in the many cases, the thyroid gland is eventually destroyed. It is considered the most common cause of hypothyroidism in North America. Some additional salient facts are:
  1. About 5% of the U.S. population will be affected by Hashimoto’s thyroiditis at some point in their life.
  2. Hashimoto’s occurs up to 15 times  more often in women than in men. The highest density of Hashimoto’s cases are between 30 and 60 years of age.
  3. Postpartum thyroiditis occurs in about 10% of patients.
  4. Hashimoto’s related hypothyroid is often under-diagnosed because the reference ranges were drawn from an unscreened population likely inclusive of those already suffering from suboptimal thyroid function or outright dysfunction.
The standard of care is to ‘manage,’ or artificially suppress, modulate, and/or replace hormone levels. Hypothyroidism caused by Hashimoto’s thyroiditis is most commonly treated with synthetic T4 in an attempt to reduce TSH levels under 5.0 U/ml. This often results in the appearance of TSH normalization, with downstream adverse effects, and without concomitant improvements in well-being. Dr. Kelly Brogan, MD, further elaborates:
“For those who do receive the label of hypothyroid, they remain obliquely objectified by their lab work as their doctors use synthetic T4 – Synthroid – to attempt to move their TSH within range, more often leaving them symptomatic but “treated” because of poor conversion to active thyroid hormone (T3) and suppression of natural T3 production because of their now lower TSH.”
It should be noted that while synthetic T4 is described by its manufacturer to be “identical to that produced in the human thyroid gland,” it is in actuality quite different. This has to do primarily with the fact that while the primary structure of amino acids in synthetic thyroxine produced from genetically modified yeast is virtually identical to that produced by the human thyroid gland, the secondary, tertiary and quaternary folding patterns of that protein may differ in significant ways. Known as the protein’s conformational state, a slight change in folding structure can alter function profoundly. This could account for widespread reports of dissatisfaction among those treated with synthetic thyroid versus natural forms extracted from the glands of pigs.
Even if the T4 produced synthetically were identical in structure and function to natural T4, the reality is that virtually all T4 found naturally in the human body is not found in its free state.

Moreover, T4 is found inextricably bound together with T3, T2, T1, and calcitron, in the extraordinarily complex Thyroxine Binding Globulin (TBG) protein. Clearly, therefore, pharmaceutical preparations of isolated T4 can not be considered identical to whole-food complexed thyroid hormones derived from natural extracts. 
In a post titled, “Natural Desiccated Thyroid and Synthetic are NOT the Same,” from thyroid-s.com, this point is driven home powerfully:

"To graphically illustrate the huge differences between Natural Desiccated Thyroid as compared to T4 Only Synthetics, please consider this graphic. It attempts to show the tiny T4, T3, T2, T1 and Calcitonin hormones tightly bound to the very large thyroglobulin molecules as found in Natural Desiccated Thyroid. Remember that the Thyroglobulin molecule is approximately 1,000 TIMES BIGGER than the T4 molecule. Then it also shows the tiny T4 molecules as found in synthetic T4 only products. The pharmaceutical companies would have us believe these are bio-identical. We will let you decide.”
Moreover, research published in 2010 in the Archives of Pharmaceutical Research shows that levothyroxine preparations are widely contaminated with a "mirror image" stereoismer called dextro-thyroxine at a level as high as 1-6% by dry weight. D-thyroxine violates the left-handed ‘chirality’ of natural thyroxine and is a powerful, cardiotoxic endocrine disruptor.  
The process by which levothyroxine sodium is produced today is highly synthetic and involves the use of a wide range of chemicals. One patent describes the dizzyingly complex process as follows:
"The process for preparation of Levothyroxine sodium comprises the steps, wherein compound obtained from steps a-g is prepared by conventional methods, a. nitrating L-tyrosine to give 3,5- dinitro-L-tyrosine, b. acetylating 3,5- dinitro-L-tyrosine to give 3,5- dinitro-N-acetyl L-tyrosine, c. esterifying the compound obtained from step (b) to give 3,5- diπitro-N-acetyl L-tyrosine ethyl ester, d. reacting the compound obtained from step (c) with p-TsCI in presence of pyridine to give corresponding tosylate salt, which is further reacting with 4-methoxy phenol to give 3,5- DinKro-4-p-methoxy phenoxy-N-acetyl-L-phenyl alanine ethyl ester, e. the compound obtained from step (d) is hydrogenated to give 3,5-diamino-4-p-methoxy phenoxy-N-acetyl-L-phenyl alanine ethyl ester, f. the compound obtained from step (e) is tetrazotized and iodized to give 3,5-Diiodo-4-p- methoxy phenoxy-N-acetyl-L-phenyl alanine ethyl ester, g. the compound obtained from step (f) is O-demethylated, N-deacetylated, and deesterified using aqueous HI in acetic acid to give 3,5-Diiodo-4-p-hydroxy phenoxy-L-pheπyl alanine followed by preparing hydrochloride salt of same and isolating, drying it h. lodinating 3,5-Diiodo-4-p-hydroxy pheπoxy-L-phenyl alanine HCI salt using methyl amine,"
Clearly, synthetic T4 treatments, even if effective at suppressing TSH, may not produce clinical outcomes that translate into improvement in well-being. Nor do they address or resolve the root causes of Hashimoto’s, which include selenium deficiency, wheat intolerance, and vitamin D/sunlight deficiency [view studies on these links on our Hashimoto’s research dashboard], along with a wide range of still yet unknown environmental, dietary, lifestyle, and mind-body factors.  Perhaps this latest study on black seed provides a new avenue for mitigating and correcting the metabolic and endocrine factors that are disturbed in Hashimoto’s disease, or at least complementing conventional treatment with a food-based approach that can improve both the subjective and objective aspects of the disease.
For more information on natural and integrative approaches to thyroid disease visit the following resource pageson GreenMedInfo.com:
To learn more about the powerful health benefits of black seed visit our research dashboard on the subject: Nigella Sativa (aka Black Seed)


Sayer Ji is founder of Greenmedinfo.com, a reviewer at the International Journal of Human Nutrition and Functional Medicine, Co-founder and CEO of Systome Biomed, Vice Chairman of the Board of the National Health Federation, Steering Committee Member of the Global Non-GMO Foundation.